Computable performance guarantees for compressed sensing matrices
نویسندگان
چکیده
The null space condition for ℓ1 minimization in compressed sensing is a necessary and sufficient condition on the sensing matrices under which a sparse signal can be uniquely recovered from the observation data via ℓ1 minimization. However, verifying the null space condition is known to be computationally challenging. Most of the existing methods can provide only upper and lower bounds on the proportion parameter that characterizes the null space condition. In this paper, we propose new polynomial-time algorithms to establish upper bounds of the proportion parameter. We leverage on these techniques to find upper bounds and further develop a new procedure-tree search algorithm-that is able to precisely and quickly verify the null space condition. Numerical experiments show that the execution speed and accuracy of the results obtained from our methods far exceed those of the previous methods which rely on linear programming (LP) relaxation and semidefinite programming (SDP).
منابع مشابه
Sparks and Deterministic Constructions of Binary Measurement Matrices from Finite Geometry
For a measurement matrix in compressed sensing, its spark (or the smallest number of columns that are linearly dependent) is an important performance parameter. The matrix with spark greater than 2k guarantees the exact recovery of ksparse signals under an l0-optimization, and the one with large spark may perform well under approximate algorithms of the l0-optimization. Recently, Dimakis, Smara...
متن کاملNear-optimal Binary Compressed Sensing Matrix
Compressed sensing is a promising technique that attempts to faithfully recover sparse signal with as few linear and nonadaptive measurements as possible. Its performance is largely determined by the characteristic of sensing matrix. Recently several zero-one binary sensing matrices have been deterministically constructed for their relative low complexity and competitive performance. Considerin...
متن کاملDeterministic Compressed Sensing Matrices from Additive Character Sequences
Compressed sensing is a novel technique where one can recover sparse signals from the undersampled measurements. In this correspondence, a K×N measurement matrix for compressed sensing is deterministically constructed via additive character sequences. The Weil bound is then used to show that the matrix has asymptotically optimal coherence for N = K, and to present a sufficient condition on the ...
متن کاملYAMPA: Yet Another Matching Pursuit Algorithm for Compressive Sensing
State-of-the-art sparse recovery methods often rely on the restricted isometry property for their theoretical guarantees. However, they cannot explicitly incorporate metrics such as restricted isometry constants within their recovery procedures due to the computational intractability of calculating such metrics. This paper formulates an iterative algorithm, termed yet another matching pursuit a...
متن کاملSoft Recovery Through ℓ1, 2 Minimization with Applications in Recovery of Simultaneously Sparse and Low-Rank Matrice
This article provides a new type of analysis of a compressed-sensing based technique for recovering columnsparse matrices, namely minimization of the l1,2-norm. Rather than providing conditions on the measurement matrix which guarantees the solution of the program to be exactly equal to the ground truth signal (which already has been thoroughly investigated), it presents a condition which guara...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2018 شماره
صفحات -
تاریخ انتشار 2018